Képminőségmérés tüdő CT felvételeken

Bognár Gergő

Eötvös Loránd Tudományegyetem, Informatikai Kar, Numerikus Analízis Tanszék bognargergo@caesar.elte.hu

Absztrakt. Az alacsony dózisú tüdő CT felvételek alkalmazása egyre elterjedtebbek a tüdőszűrés során. A csökkentett sugárdózis előnyös klinikai tulajdonságai mellett a képminőség romlásához vezet. Jelen cikkben egy referenciakép nélküli képminőségmérő eljárást mutatok be, amely objektívan méri a CT képek minőségét. A módszer intenzitás szerinti szegmentáláson alapul, kifejlesztését és tesztelését valós, alacsony és magas dózisú felvételekkel, valamint egy konstruált tüdő-fantom és zajmodellezés segítségével szintetizált képekkel végeztem.

1. Bevezetés

A komputertomográfia alkalmazása során orvosi szempontból a legkomolyabb problémát a pácienst érő sugárterhelés jelenti. Napjainkban egyre elterjedtebb, elsősorban tüdő CT felvételek készítésekor, az alacsony sugárdózis használata. A dózis redukálása a pácienst érő sugárterhelést ugyan csökkenti, de a felvétel képminőségének romlásához, a képzaj felerősödéséhez vezet, emiatt az orvosi diagnosztikai felhasználás során nehezebben azonosíthatók az egyes anatómiai képletek. Munkám motivációjául ezen alacsony dózisú CT felvételek minőségének elemzése szolgált: olyan objektív mérőszámot kerestem, amely jól jellemzi az alacsony dózisú CT képek minőségét. A kifejlesztett és bemutatásra kerülő képminőségmérő eljárás szimulált környezetben és valós CT felvételek esetén is megbízhatóan határozza meg a felvételek minőségét. Az eljárás kidolgozásához a PET Pozitron-Diagnosztika Központ felvételeit használtam, de a módszert teszteltem az ELCAP [9] alacsony dózisú, és a Lung Image Database Consortium [1] magas dózisú tüdőfelvételeit tartalmazó adatbázisain. A szimulációk futtatását MATLAB környezetben végeztem.

A tomográfiás képalkotás során a röntgensugaraknak a vizsgált test anyagában történő elnyelődése a Beer-Lambert-törvény segítségével írható le:

$$I = I_0 \exp\left(-\int_L \mu\right),\tag{1}$$

ahol I_0 a forrás röntgensugár intenzitása, I a detektor által mérhető intenzitás, L a sugár által megtett út, μ a helytől függő, a test anyagára jellemző lineáris elnyelési együttható. A CT felvétel rögzítése során keletkező szinogram a lineáris elnyelési együtthatók adott irányok szerint vett Radon-transzformáltja, amiből rekonstruálható a helytől függő elnyelési együttható a Radon-transzformáció

diszkrét invertálásával, szűrt visszavetítéssel, vagy iteratív rekonstrukciós módszerek segítségével. Mivel a lineáris elnyelési együttható energiafüggő, így a CT felvételeken a víz elnyelési együtthatójával normált ún. HU (*Hounsfield Unit*) értékek kerülnek megjelenítésre:

$$HU = 1000 \cdot \frac{\mu - \mu_{H_2O}}{\mu_{H_2O}}.$$
 (2)

A röntgenfotonok elnyelődése és szóródása mellett a képrögzítés során a felvételen megjelenő zaj két fő összetevője az elektromos eszközök zaja és a fény természetéből adódó kvantumzaj. Előbbi képfüggetlen, additív, fehér Gauss-zajként, utóbbi képfüggő Poisson-zajként modellezhető. A rekonstrukció során a diszkretizációból származóan további kvantálási zaj rakódhat a képre.

A képminőségmérés általános célkitűzése a vizuális tartalom minőségének jellemzése az emberi érzékelésnek megfelelően, automatikus mérési módszerek, ún. képminőséget mérő metrikák segítségével. Ezen metrikák a vizsgált kép minőségét egy objektív mérőszám segítségével határozzák meg [7]. A kép jellegétől függően a metrikák többféle megközelítésen alapulhatnak: az emberi látórendszer modellezésén, vagy a kép adott minőségbeli jellemzőinek elemzésén, a képtípusra jellemző torzulások (zaj, elmosódás, intenzitásváltozás, stb.) vizsgálatán. A gyakorlatban elterjedt módszerek legtöbbje a képminőség meghatározásához felhasználja a vizsgált kép egy jó minőségű, torzítatlan változatát, az ún. referenciaképet. Ezek közül a legismertebbek a referencia- és a vizsgált kép közötti hiba mérésén alapuló MSE (mean-squared error) és SNR (signalto-noise ratio), a strukturális hasonlóságot vizsgáló SSIM (structural similarity) [13] valamint a természetes képek elemzésén alapuló VIF (visual information fidelity) [10] metrikák. Ezen módszerek azonban nem alkalmazhatók közvetlenül CT felvételek esetén, mivel az alacsony dózisú felvétel mellett jellemzően nem áll rendelkezésre magas dózisú, jó minőségű változat.
 1 Az ismert referenciakép nélküli metrikák közül a természetes képek modellezésén alapuló módszerek nem alkalmazhatóak CT felvételekre, mivel ezek a természetes környezetünk látható fénytartományban rögzített felvételeit vizsgálják. A torzításelemzésen alapuló módszerek ígéretesek, de ezen módszerek gyakori hibája, hogy csak relatív értelemben mérik a képminőséget, azaz ugyanazon kép eltérő minőségű változatai között különbséget tudnak tenni, de két különböző kép esetén nem összemérhető az eredményük. CT felvételek esetén alkalmazzák a CNR (contrastto-noise) és SNR (signal-to-noise) metrikákat [2], a háttér és a szöveti régiók általában kézzel kijelölve, nem automatizált módon.

A cikk felépítése a következő: A 2. fejezet a kidolgozott módszert ismerteti. A 3. fejezet ennek működését és vizsgálatát mutatja be egy konstruált tüdőfantom és zajmodellezés segítségével végzett szimulációban. A 4. fejezet a valós CT képeken végzett vizsgálatok eredményét tartalmazza. Az utolsó, 5. fejezetben a bemutatott eredmények összefoglalása és a további kutatási tervek találhatók.

¹ A referenciaképet használó metrikák alkalmazása CT képek esetén ugyanakkor nem példa nélküli: a [8] cikkben az SSIM és az RMSE (*root-mean-squared error*) metrikákat használták alacsony dózisú felvételek iteratív rekonstrukciós eljárásainak vizsgálatához, egy magas dózisú felvételt referenciaként felhasználva.

2. Szegmentálás és képminőségmérés

A bemutatásra kerülő módszer a CT képeket intenzitás szerint szegmentálja a CT felvételek tulajdonságainak figyelembevételével. A képminőség meghatározása a kapott szegmentált kép és az eredeti kép összehasonlításán alapul.

1. ábra: Különböző minőségű alacsony dózisú CT képek és hisztogramjaik

A módszer kifejlesztéséhez a PET Pozitron-Diagnosztika Központ 20 alacsony dózisú tüdő CT felvételét használtam fel, melyek hasonló körülmények között és beállításokkal kerültek rögzítésre. A további teszteléseket a későbbiekben bemutatásra kerülő tüdő-fantom és zajmodellezés segítségével végeztem. Az alapötlet a CT képek hisztogramjának és intenzitáseloszlásának elemzéséből származik, ugyanis azt tapasztaltam, hogy a felvételek hisztogramjai azonos karakterisztikájúak és hasonló lefutásúak. Az 1. ábrán két különböző minőségű felvétel egy-egy szelete (hamis színes megjelenítéssel) és azok hisztogramjai láthatók. A többi felvételhez viszonyítva az (a) jelű kép átlagosnak, a (c) jelű

szélsőségesen rossz minőségűnek tekinthető. A hisztogramok hasonlósága anatómiai okokra vezethető vissza: a tüdőrégiót alkotó szövettípusok személyenként hasonló mennyiségi eloszlásúak, és intenzitás szerint elkülöníthetők egymástól. Az intenzitások területi eloszlását vizsgálva megállapítható, hogy a zsír-, izomés csontszövet nagyobb összefüggő homogén régiókat, míg a tüdőszövet kis csomókat vagy vékony vonalakat alkot a képeken. Mindezen megfigyelésekből származik az az ötlet, hogy a CT képeket, pontosabban a CT felvételek egy belső szeletét szegmentáljuk intenzitás szerint, az egyes pixeleket osszuk szövettípus szerinti klaszterekbe. A kijelölt klaszterek és reprezentáns értékeik az 1. táblázatban láthatók. A gyakorlatban ezek a klaszterek nem különülnek el élesen egymástól, ugyanis a diszkretizáció és a felvételre rakódó zaj miatt az egyes szövettípusok intenzitásának szórása megnő. Diagnosztikai szempontból a tüdő vizsgálata fontos, így a szegmentáló algoritmusnak a tüdőszövet részletességének megőrzésére, míg más szöveti régiókban a területi homogenitás kialakítására kell törekednie.

Anyag	Prototípus (HU)	
Levegő	-1000	
Tüdőszövet	-600	
Zsírszövet	-100	
Izomszövet és belsőszerv	100	
Csontszövet	500	

1. táblázat: Az intenzitás szerinti szegmentálás klaszterei

A szegmentáló algoritmus konstrukciójához az orvosi képfeldolgozásban ismert SKFCM (spatially constrained kernelized fuzzy C-means) [14] algoritmust vettem alapul, a bemutatásra kerülő módszer ennek módosítása. Az SKFCM a klasszikus FCM (fuzzy C-means) szegmentáló algoritmus továbbfejlesztése, amely távolságmetrikaként egy radiális Gauss-bázisfüggvényt (kernel) használ, és homogén területek kialakítására törekszik, így lehetővé téve zajos képek szegmentálását. Az $x = (x_k)_{k=1}^N$ szegmentálandó pixelhalmaz C számú klaszterbe sorolásához meghatározza a $v = (v_i)_{i=1}^C$ klaszterprototípusokat és az $U \in [0, 1]^{C \times N}$ partícionáló mátrixot, melynek elemeire:

$$\forall k : \sum_{i=1}^{C} u_{ik} = 1, \ \forall i : 0 < \sum_{k=1}^{N} u_{ik} < N.$$
(3)

A partícionáló mátrix u_{ik} eleme az x_k pixel *i*-edik klaszterhez tartozásának a valószínűségét reprezentálja. A mátrix ismeretében az x_k elem az *i*-edik klaszterbe sorolandó, ha $u_{ik} = \max \{u_{jk} | j = 1, \ldots, C\}$. Az algoritmus eredményeképp a szegmentálandó kép pixeleit a hozzájuk rendelt klaszterprototípusára cserélve

adódik a szegmentált kép. A mátrix és a klaszterek prototípusai a következő $J_m = J_m(x, v, U)$ kifejezés minimalizálásából adódnak:

$$J_m = \sum_{i=1}^C \sum_{k=1}^N u_{ik}^m \left(1 - K(x_k, v_i) + \frac{\alpha}{|N_k|} \sum_{r \in N_k} (1 - u_{ir})^m \right), \tag{4}$$

ahol *m* az algoritmust jellemző pozitív kitevő, *K* radiális Gauss-bázisfüggvény σ szórással, N_k ablak az x_k elem egy x_k -t nem tartalmazó környezete, $0 < \alpha < 1$ pedig az $\frac{\alpha}{|N_k|} \sum_{r \in N_k} (1 - u_{ir})^m$ térbeli együttható hatásának erősségét szabályozza.

E térbeli együttható segíti elő a területi homogenitás kialakulását.

Az alapmodell hiányossága esetünkben az, hogy az egyes klaszterekben azonos mértékű területi homogenitás kialakítására törekszik. Az alkalmazáshoz ezért a térbeli együttható módosítására volt szükség, emellett megvalósításomban a klaszterprototípusokat rögzítettnek tekintettem (az 1. táblázatbeli értékeknek megfelelően), és az eljárás paramétereit a CT képekhez optimalizáltam. A térbeli együtthatóban szereplő ablakok méretét klaszterenként különböző méretűre választottam, az i. klaszterhez tartozó $N_{i,k}$ ablakokban az összegzést w_{ik} súlyokkal végeztem el (ahol $\forall i : \sum_{r \in N_{ik}} w_{ik} = 1$, és $x_k \notin N_{ik}$). A különböző méretű ablakok használata lehetővé teszi, hogy az egyes klaszterekben különböző méretékű homogenitást követeljünk meg, a w súlyokat egy Gauss-szűrő segítségével megválasztva pedig csökkenthető az eljárás során jelentkező blokkosodás. A módosított paraméterekkel a tüdőszövet részletessége megőrizhető, miközben a zsír-, izomés csontszövet esetén továbbra is homogén területek kialakítását kívánjuk elérni. A módosított optimalizáló kifejezés a következő:

$$J_m = \sum_{i=1}^C \sum_{k=1}^N u_{ik}^m \left(1 - K(x_k, v_i) + \alpha \sum_{r \in N_{ik}} w_{ir} (1 - u_{ir})^m \right).$$
(5)

A kifejezés minimalizálása az eredeti SKFCM algoritmushoz hasonlóan iteráció segítségével történik, de mivel most v rögzített, így az egyes lépésekben csak U frissítése történik meg a következőképpen:

$$u_{ik}^{(t+1)} = \frac{\left(1 - K(x_k, v_i) + \alpha \sum_{r \in N_{ik}} w_{ir} \left(1 - u_{ir}^{(t)}\right)^m\right)^{-1/(m-1)}}{\sum_{j=1}^C \left(1 - K(x_k, v_j) + \alpha \sum_{r \in N_{jk}} w_{jr} \left(1 - u_{jr}^{(t)}\right)^m\right)^{-1/(m-1)}}.$$
 (6)

Az iteráció előttUa következőképpen inicializálható:

$$u_{ik}^{(0)} = \frac{\left(1 - K(x_k, v_i)\right)^{-1/(m-1)}}{\sum_{j=1}^{C} \left(1 - K(x_k, v_j)\right)^{-1/(m-1)}}.$$
(7)

Az iteráció egy előre rögzített t_{max} lépés után áll meg, vagy ha az Umár nem változik elég nagy mértékben, azaz az $E^{(t)} = \|U^{(t)} - U^{(t-1)}\|_{\infty}$ hibára $E^{(t)} < \varepsilon$. A tesztek azt mutatják, hogy míg jó minőségű képek esetén a módszer valóban konvergens, nagyobb zajszint esetén az iteráció korai leállása esetén kapható legjobb eredmény. A korai leállás a t_{max} lépésszám alacsony értékűre választásával, vagy az $E^{(t)} > \beta E^{(t-1)}$ feltétel esetén történő kilépéssel érhető el, valamely $\beta > 0$ együttható mellett.

Az algoritmus hatékonysága növelhető a szegmentálás elé beiktatott előfeldolgozási fázissal. Ennek során a háttér, vagyis a CT kép testen kívüli része szűrésre kerül Gauss- és mediánszűrő, küszöbölés és régiókitöltés segítségével, valamint a -700 HU intenzitás alá eső értékeken gammakorrekció történik. Az eljárás paraméterei kézi optimalizálással kerültek kiválasztásra, a további szimuláció és tesztelés során m = 2, $\alpha = 0.3$, $\beta = 0.75$, $t_{max} = 100$, a levegő és a tüdő ablaka 3×3 méretű, 0.5 szórású, a többi klaszter esetén 9×9 méretű, 1.5 szórású Gaussszűrőből származik. A tesztelések alapján az algoritmus akkor hatékony, ha a KGauss-kernel σ szórása a képzajjal arányos. A képzaj durva becslését és ezáltal σ meghatározását wavelet-transzformáció segítségével végeztem. A 2. ábrán az előfeldolgozás (a) és a szegmentálás (b) eredménye látható, az 1. ábrán bemutatott (a) jelű képre vonatkozólag.

2. ábra: Az előfeldolgozás és a szegmentálás eredménye

A fentiek alapján a CT képek minőségének mérésére a következő módszert javasolom: a szegmentált képet mint referenciaképet és az előfeldolgozott képet hasonlítsuk össze a gyakorlatban elterjedt SSIM [13] metrika segítségével. A kapott mérőszám a [-1,1] intervallumba esik, az alacsonyabb érték rosszabb képminőségnek felel meg. A következő fejezetekben bemutatott tesztek azt mutatják, hogy ez a mennyiség jól követi a vizsgált alacsony dózisú tüdő CT felvételek minőségét.

3. Tüdő-fantom segítségével végzett tanulmány

A CT képfeldolgozó algoritmusok tesztelésének szokásos módszere a fantomok segítségével történő szimuláció. A legismertebb fantom a Shepp-Logan fantom [11], amely az agy sematikus modellezése ellipszisek segítségével. Az ellipszisekkel konstruált fantomok azért előnyösek a CT szimuláció során, mert Radon-trasz-formáltjuk ismert és könnyen számítható [12], így a fantom szintetizált szinog-ramja analitikusan előállítható. Az előző fejezetben bemutatott módszer tesz-teléséhez egy ellipszisekből álló tüdő-fantomot konstruáltam a Shepp-Logan fantom mintájára. A fantom a 3. ábrán látható, az ellipszisek intenzitásai az 1. táb-lázatban szereplő prototípusok. A zsír-, izom- és csontszövetet reprezentáló 6 nagy ellipszis mellett a tüdőben 100-100 kisméretű, véletlenszerű elhelyezkedésű és méretű ellipszis modellezi a tüdőszövetet.

3. ábra: A tüdő-fantom

A fantom segítségével a következőképpen végeztem a CT képalkotás szimulációját: A fantom Radon-traszformáltját mintavételeztem, az így kapott szinogramhoz különböző mértékű, mesterségesen generált zajt adtam, majd rekonstruáltam a képet szűrt visszavetítés, Ram-Lak szűrő segítségével. Ezen szintetizált CT képeket használtam fel a további vizsgálatokhoz.

A szimuláció során az elektromos zajt és a kvantumzajt az [5] zajmodell alapján generáltam, amely a detektoron mért intenzitásra alkalmazható. Az elektromos zajt 0 várható értékű, rögzített varianciájú normális eloszlású valószínűségi változónak, a kvantumzajt a Poisson-eloszlás határeloszlásának figyelembevételével 0 várható értékű, képfüggő varianciájú normális eloszlású valószínűségi változónak tekintve a modell a következőképpen írható fel:

$$I_{zaj} = I + \eta(I), \tag{8}$$

$$\eta(I) \sim \mathcal{N}\left(0, aI + b\right),\tag{9}$$

4. ábra: Szintetizált tüdő-fantom képek különböző erősségű zaj mellett

ahol I a várt, Beer-Lambert-törvényből adódó, I_{zaj} pedig a detektoron ténylegesen mérhető intenzitást modellezi, az η zajfüggvény a két zajkomponens hatását tartalmazza, az a és b pozitív paraméterek rendre az elektromos zaj és a kvantumzaj erősségét fejezik ki. Hasonló összefüggés írható fel a mért és a forrásintenzitás arányára is, módosított a és b paraméterekkel:

$$\frac{I_{zaj}}{I_0} = \frac{I}{I_0} + \eta \left(\frac{I}{I_0}\right),\tag{10}$$

$$\eta\left(\frac{I}{I_0}\right) \sim \mathcal{N}\left(0, a\frac{I}{I_0} + b\right),$$
(11)

ahol I_0 a forrásintenzitás. A modellt a vizsgált alacsony dózisú CT felvételek rögzítésekor használt paraméterek figyelembe vételével alkalmaztam: a szimuláció során a röntgenfotonokat 130 KeV energiájúnak tekintettem, ennek megfelelően a $\mu_{H_2O} \approx 0.16~{\rm cm^{-1}}$ közelítő értékkel számoltam [6], 512 × 512 felbontású rekonstruált képeket készítettem 0.06484 cm pixeltávolsággal. Az L irányban

számított P(L) Radon-traszformáltból a következőképpen állítható elő az intenzitások aránya:

$$\frac{I}{I_0} = \exp\left(-0.16 \cdot 0.06484 \cdot P(L)\right).$$
(12)

Az I/I_0 intenzitásarányt a fenti modell alapján generált zajjal terhelve adódik az I_{zaj}/I_0 intenzitásarány, ebből pedig kiszámítható a $P_{zaj}(L)$ zajjal terhelt Radon-traszformált:

$$P_{zaj}(L) = -\frac{1}{0.16 \cdot 0.06484} \cdot \ln\left(\frac{I_{zaj}}{I_0}\right).$$
(13)

A 4.ábrán a tüdő-fantom $a = 10^{-4}$, illetve $a = 5 \cdot 10^{-4}$ és $b = 10^{-7}$ zajparaméterek melletti rekonstrukciója, (a) illetve (c), és azok hisztogramjai, (b) illetve (d), láthatók. Az eredményeket az 1. ábrával összehasonlítva látható, hogy a szintetizált képek vizuálisan korrelálnak a valós CT felvételekkel, és hisztogramjaik is hasonló karakterisztikájúak. Ez is igazolja, hogy a konstruált tüdő-fantom tényleg a tüdő CT képek sematikus közelítésének tekinthető.

Az előző fejezetben ismertetett metrika tüdő-fantom segítségével végzett tesztelése azt mutatja, hogy a szegmentálás megőrzi a kép kívánt tulajdonságait, a kapott mérőszám pedig jól jellemzi a képminőséget a zajparaméterek változtatása mellett. A 2. táblázat egy zajszimulációval végzett mérés eredményét mutatja: az a paraméter 11, a b paraméter 3 különböző értéke mellett, értékpáronként 20 mérést végezve, az eredményt átlagolva, az 5. ábra diagramja a metrika változását mutatja az a paraméter függvényében, $b = 10^{-7}$ esetén. Látható, hogy rögzített b paraméter, azaz adott elektromos zajszint mellett a metrika értéke csökken az a paraméter, azaz a kvantumzaj mértékének növelésével.

b	$1\cdot 10^{-7}$	$5\cdot 10^{-7}$	$10\cdot 10^{-7}$
$0\cdot 10^{-5}$	0.98148	0.95697	0.93425
$5\cdot 10^{-5}$	0.88519	0.87195	0.85912
$10\cdot 10^{-5}$	0.82087	0.81362	0.80628
$15\cdot 10^{-5}$	0.779	0.77572	0.77224
$20\cdot 10^{-5}$	0.75378	0.75271	0.7515
$25\cdot10^{-5}$	0.73755	0.73772	0.73736
$30\cdot 10^{-5}$	0.72665	0.72734	0.72792
$35\cdot 10^{-5}$	0.72206	0.72112	0.72237
$40\cdot 10^{-5}$	0.71746	0.71836	0.72068
$45\cdot 10^{-5}$	0.71639	0.71768	0.71896
$50\cdot 10^{-5}$	0.71633	0.7179	0.71867

2. táblázat: A metrika értékei a zajos tüdő-fantom szimulációban. A sorok az a, az oszlopok a b paraméter értékeit mutatják.

5. ábra: A metrika értékeinek diagramja, az a paraméter függvényében, $b = 10^{-7}$ mellett, a 2. táblázat alapján.

4. Tesztelés valódi CT felvételeken

A módszer alacsony dózisú tüdő CT felvételeken végzett tesztelése azt mutatja, hogy a szegmentálás jól megőrzi a CT képek szerkezetét, a metrika értéke korrelál a vizuálisan érzékelhető minőséggel. A PET Pozitron-Diagnosztika Központ felvételeihez a metrika 0.61676 és 0.85809 közötti értékeket rendel. A 6. és 7. ábrákon nyolc felvétel és a hozzájuk tartozó metrika értékek hasonlíthatók össze, a legrosszabbnak ítélt (a) jelű, a legjobbnak ítélt (h) jelű, és közepes minőségű felvételek. A vizuálisan is legrosszabb minőségű (a) felvétel esetén a legrosszabb a szegmentálás hatékonysága, a szegmentált kép is zajjal terhelt, de ezzel összhangban a metrika is a legalacsonyabb értéket rendelte hozzá.

6. ábra: A PET Pozitron-Diagnosztika Központ alacsony dózisú tüdő CT felvételeinek összehasonlítása: különböző minőségű képek, és a metrika értékei.

(g) 0.83875

(h) 0.85809

7. ábra: A PET Pozitron-Diagnosztika Központ alacsony dózisú tüdő CT felvételeinek összehasonlítása: különböző minőségű képek, és a metrika értékei.

Az ELCAP adatbázisban [9] található 50 alacsony dózisú tüdő felvétel elemzése hasonló eredményt mutat: a metrika értéke itt 0.65505 és 0.85857 között mozog. A két adatbázist összehasonlítva a közeli mérőszámmal rendelkező felvételek között szoros vizuális kapcsolatot lehet találni. A módszert az LIDC adatbázis [1] 20 magas dózisú tüdő felvételén is teszteltem: a szegmentálás ezen képek esetén nagy hatékonysággal működik, a metrika 0.82946 és 0.93688 közötti értékeket vesznek fel. A vizsgált alacsony és magas dózisú felvételek elemzése alapján megállapítható, hogy a magas dózisú felvételek mérőszámai magasabb értéktartományban mozognak, de nem különülnek el élesen az alacsony dózisú felvételek mérőszámaitól. Az éles elkülönülés azonban nem is várható el: diagnosztikai felhasználhatóság szempontjából egy jó minőségű, alacsony dózisú felvétel megközelíthet egy rossz minőségű, magas dózisú felvételt.

5. Összefoglalás, további tervek

A cikkben alacsony dózisú tüdő CT felvételeket vizsgáltam: egy intenzitás szerinti szegmentáláson alapuló módszert javasoltam a CT felvételek minőségének objektív mérésére. A módszer tesztelését egy erre a célra konstruált tüdő-fantom segítségével végzett szimulációban és valós CT felvételeken végeztem el. Mindkét vizsgálat azt mutatja, hogy a kapott metrika jól jellemzi a CT képek minőségét. A bemutatott módszer a paraméterek hangolásával más, hasonló típusú képekre is alkalmazható, például a test egyéb részeinek CT felvételére, az orvosi képalkotás más modalitásai segítségével rögzített felvételekre, mikroszkopikus képekre. További terveim között szerepel a módszer alkalmazása más körülmények között, illetve egy ezen alapuló képjavító eljárás fejlesztése.

6. Köszönetnyilvánítás

A kutatás a PET Pozitron-Diagnosztika Központ és az ELTE IK Numerikus Analízis Tanszék közötti együttműködés keretében történt, a Központban rögzített CT felvételek felhasználásával. Köszönöm Dr. Lengyel Zsoltnak, a Központ orvos igazgatójának a közreműködését, és doktori témavezetőmnek, Dr. Fridli Sándornak a hasznos észrevételeit és tanácsait.

Irodalom

- Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz D, et al.: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Medical Physics 38 (2011), 915–931.
- J.T. Bushberg, J.A. Seibert, E.M. Leidholdt Jr., J.M. Boone: *The Essential Physics of Medical Imaging, Second Edition*. Lippincott Williams & Wilkins, Philadelphia, PA (2002), ISBN 0-683-30118-7.

- S.R. Deans: The Radon transform and some of its application. John Wiley & Sons, New York (1983), ISBN 0-471-89804X.
- G. Dougherty: Digital Image Processing for Medical Applications. University Press, Cambridge (2009), ISBN 978-0-521-86085-7.
- A. Foi, M. Trimeche, V. Katkovnik, K. Egiazarian: *Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data*. IEEE Transactions on Image Processing **17(10)** (2008), 1737–1754.
- J.H. Hubbel, S.M. Seltzer: Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4). National Institute of Standards and Technology, Gaithersburg, MD (2004), http://physics.nist.gov/xaamdi [2014. november 30.]
- W. Lin., C.-C.J. Kuo: Perceptual visual quality metrics: A survey. J. Vis. Commun. Image R. 22(4) (2011), 297–312.
- L. Pfister, Y. Bresler: Tomographic reconstruction with adaptive sparsifying transforms. IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) (2014), 6914–6918.
- 9. Public Lung Image Database, http://www.via.cornell.edu/databases/lungdb.html [2014. november 30.]
- H.R. Sheikh, A.C. Bovik: Image information and visual quality. IEEE Transactions on Image Processing 15(2) (2006), 430–444.
- L.A. Shepp, B.F. Logan: The Fourier reconstruction of a head section. IEEE Transactions on Nuclear Science 21(3) (1974), 21–43.
- Schipp Ferenc: Radon transzformáció. Egyetemi Jegyzet, Eötvös Loránd Tudományegyetem, Budapest (2004).
- Z. Wang, A.C. Bovik, H. R. Sheikh, E. P. Simoncelli: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4) (2004), 600–612.
- D.-Q. Zhang, S.-C. Chen: A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artificial Intelligence in Medicine 32(1) (2004), 37–50.